
Movie Sentiment Analysis: A Multinomial Naı̈ve Bayes-Based Approach for
Assessing User and Critic Opinions

Yassine Rodani
University of Haute-Alsace, FR
yassine.rodani@uha.fr

Abstract

The growing volume of user-generated content, particu-
larly in the form of movie reviews, presents both challenges
and opportunities for researchers and practitioners in the
movie industry. Sentiment analysis (SA) has emerged as a
vital tool to automatically process and interpret this vast
data repository, offering valuable insights into viewer pref-
erences and opinions [1]. This paper presents a compre-
hensive review of the techniques and applications of movie
sentiment analysis, highlighting the role of natural lan-
guage processing and machine learning algorithms in ex-
tracting sentiment from text data. In this project, I involve a
comprehensive study of relevant NLP techniques, including
data pre-processing, feature extraction, and model selec-
tion. The chosen Multinomial Naı̈ve Bayes algorithm will
be trained on a data set of user critic reviews, with model
performance evaluated based on multiple evaluation met-
rics. Results demonstrate a high classification accuracy of
86.3%, which indicates the effectiveness of the proposed so-
lution. This confirms the potential of incorporating the de-
signed approach into modern text-based sentiment analysis
tools.

1. Introduction

In recent years, the movie industry has experienced ex-
ponential growth, with an increasing number of films be-
ing produced and consumed worldwide [2]. Understanding
audience and critic opinions has become crucial for film-
makers, marketers, and distributors to create and promote
content that resonates with viewers. Traditionally, the anal-
ysis of movie reviews has relied on manual methods, which
can be time-consuming and prone to subjectivity. As a re-
sult, there is a pressing need for an automated solution that
can efficiently and accurately analyze movie sentiment. [3]

The Movie Sentiment Analysis project addresses this
need by developing a natural language processing model ca-
pable of extracting sentiment from user critic reviews. This

project utilizes the Multinomial Naı̈ve Bayes algorithm to
predict positive or negative sentiments from text data. The
choice of this algorithm is motivated by its simplicity, effi-
ciency, and proven success in text classification tasks.

To ensure the effectiveness of the model, a thorough ex-
ploration of relevant NLP techniques will be undertaken,
including data preprocessing, feature extraction, and model
optimization. A comprehensive evaluation of the model’s
performance will be carried out, using metrics such as ac-
curacy, F1 score, and a confusion matrix. Ultimately, the
Movie Sentiment Analysis project will be deployed as a
user-friendly Python web application using the Streamlit
framework, which will be containerized with Docker. This
approach allows users to easily access and utilize the sys-
tem.

The paper is structured as follows: Section 2 describes
the related work in the area of SA. Section 3 covers the ma-
terials and methods used in development. Section 4 outlines
the proposed methodology. Section 5 presents the results of
the proposed approach. Section 6 delves into the deploy-
ment of the model, while Section 7 concludes the research
and explores future work.

2. Related Work

Over the years, sentiment analysis has evolved as a sig-
nificant research area, enabling the extraction of meaning-
ful information from large volumes of user-generated con-
tent. Many studies have focused on developing techniques
and models to effectively analyze sentiments in various do-
mains, including product reviews, social media posts, and
movie reviews [3, 4]. In the context of movie sentiment
analysis, researchers have employed various natural lan-
guage processing (NLP) and machine learning algorithms
to better understand viewer preferences and opinions [5, 6].

One of the earliest works in sentiment analysis, by Tur-
ney [5], focused on using unsupervised learning to classify
movie reviews as positive or negative. Further advance-
ments in the field led to the exploration of supervised learn-
ing techniques, such as Naı̈ve Bayes, Support Vector Ma-

1



chines, and deep learning models like Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM)
networks [6–8]. These models have demonstrated varying
degrees of success in capturing the nuances of sentiment in
movie reviews.

Recent studies have also explored the use of pre-trained
language models, such as BERT and GPT, to improve sen-
timent analysis performance by leveraging their ability to
understand complex linguistic patterns [9, 10]. In addition
to advancements in modeling techniques, researchers have
focused on refining data pre-processing and feature extrac-
tion methods, such as tokenization, stemming, and the use
of word embeddings, to better represent the underlying sen-
timent in the text [11, 12].

3. Materials and Methods

3.1. Data

For this project, I will be using a data set containing 50k
movie reviews from IMDb [13]. The data have already
been splitted into 25k reviews for training purposes while
the other 25k is intended for testing the classifier. In addi-
tion, both sets contain 12.5k positive and negative reviews
as shown in Figure 1.

Figure 1. Class distribution of the IMDb movie reviews data
set [13], illustrating an equal split of 12.5k positive and negative
reviews in both the training and testing sets. This balanced distri-
bution helps ensure fair evaluation and generalization of the clas-
sifier.

The reviews are classified into positive and negative in
reference to the IMDb rating system. It allows viewers to
rate on a scale from 1 to 10, and according to the data set
creator anything less than 4 stars is labeled negative, and
above 7 stars is marked as positive. Reviews with ratings
out of the above ranges are not included. There are at most
30 reviews for each movie. The average number of words

per review is 233.79 with a standard deviation of 173.73
words as shown in Figure 2.

Figure 2. Distribution of Review Length by Sentiment (average:
233.79, standard deviation: 173.73), showing the frequency of
movie reviews split by sentiment (positive or negative) and the
corresponding distribution of review lengths (measured in word
count). The black dashed line indicates the mean review length,
while the gray dashed lines indicate one standard deviation above
and below the mean.

The spread is similar in shape for both types of reviews
however negative reviews are on average a tad shorter.

3.2. Preprocessing

For any machine learning project, once you’ve gathered
the data, the first step is to process it to make useful inputs
to your model. Data preprocessing is a crucial task in the
data mining process. It refers to cleaning up the data from
useless information that will not help in the training process
and might cause confusion during the classification process.
For the IMDb data set, several data preprocessing steps are
utilized.

• Text Tokenization: As illustrated in Figure 3, tok-
enization is the process of dissecting a text segment
into smaller units, referred to as tokens. These tokens
can consist of words, word fragments, or punctuation
marks, allowing for more effective natural language
processing and analysis.

• Word Filtering: To remove noise from the data, we
will first eliminate words that don’t provide much in-
formation about the content, such as common words
like ’I, you, are, is, etc.’ that don’t offer sufficient
insight into sentiment. Then, we will remove hyper-
links, hashtags, and punctuation to ensure words with
or without punctuation are treated as the same word.
For example, ”happy”, ”happy?”, ”happy!”, ”happy,”
and ”happy.” should all be considered as the same
word.

2



Figure 3. Visual representation of the tokenization process, show-
casing the transformation of raw text input into individual tokens.

• Stemming: Stemming entails eliminating prefixes and
suffixes from a word to obtain its base or root form.
The Porter stemming algorithm, a rule-based method
developed by Martin Porter [14], is commonly em-
ployed for this purpose. In this algorithm, a consonant
is defined as any letter excluding vowels. The calcu-
lation of conditions in the algorithm is demonstrated
in Form 1, where optional content is represented by
square brackets, and (V C)m indicates a sequence of a
Vowel (V ) followed by a Consonant (C) repeated m
times.

[C] (V C)m [V ] (1)

This algorithm adheres to a set of rules that consist
of patterns along with their associated conditions, the
rules follow the Form 2:

S1 −→ S2 (2)

If a pattern is found to match and the word concludes
with the S1 suffix, the suffix is converted from S1 to
S2, and the algorithm starts anew from the list’s be-
ginning to identify the subsequent matching pattern.
Should no pattern match, the algorithm then outputs
the result.

3.3. Word Embedding

Before training the model, we need to transform our
cleaned reviews into numerical values so that the model can
understand the data. This process is what we call Word Em-
bedding. By mapping words into a high-dimensional vec-
tor space, word embeddings capture the relationships be-
tween words, allowing for the identification of synonyms,
antonyms, and other linguistic patterns. In this project, I
will be using TfidfVectorizer method from scikit-learn [15]
that will help to convert a collection of text documents to a
matrix of TF-IDF features.

3.4. Multinomial Naı̈ve Bayes Classifier

A Multinomial Naı̈ve Bayes classifier is a probability-
based machine learning model utilized for classification
tasks [16]. This classifier fundamentally relies on the prin-
ciples of Bayes’ theorem as shown in Equation 3.

P (A|B) =
P (B|A)P (A)

P (B)
(3)

By applying Bayes’ theorem, we can determine the proba-
bility of event A occurring, given that event B has already
taken place. In this context, B represents the evidence and
A stands for the hypothesis. The underlying assumption is
that the predictors or features are independent, meaning the
presence of one feature does not influence the others. This
is why the classifier is deemed ”naive”.

This classifier is commonly used for document classifi-
cation tasks, such as determining the category a document
belongs to, be it sports, politics, technology, or others. The
features or predictors employed by the classifier are based
on the frequency of words found within the document.

In the context of the movie sentiment analysis project,
the Multinomial Naive Bayes classifier operates under these
assumptions to classify movie reviews as positive or nega-
tive. We would focus on counting the number of positive
and negative words or phrases present within the text. This
can be achieved by creating a predefined list of positive and
negative words, often referred to as a ”sentiment lexicon”.
The classifier then calculates the frequency of these words
within the document, allowing it to determine the overall
sentiment of the text. For example, a higher frequency of
positive words would suggest a positive sentiment, whereas
a higher frequency of negative words would suggest a neg-
ative sentiment.

4. Proposed Approach

In this project, I propose a sentiment analysis model us-
ing Multinominal Naı̈ve Bayes algorithm. The execution
steps that are shown in Figure 4 could be summarized as
the following:

1. Raw Text

2. Text Tokenization: String to Word Vector

3. Removing unwanted words using regular expressions

4. Removing unwanted words manually

5. Stemming

6. Word Embedding using TF-IDF method

7. Multinomial Naı̈ve Bayes Classifier

8. Sentiment Predictions

3



Figure 4. The proposed system flowchart

5. Results
For evaluation, three metrics were used: accuracy, f1-

score, and a confusion matrix to provide a tabular visualiza-
tion of the ground-truth labels versus model predictions as
shown in Figure 5. The two first measures can be calculated
by applying Equations 4, 5, 6, and 7, where TP stands for
True Positives, TN stands for True Negatives, FP stands
for False Positives, and FN stands for False Negatives.

Accuracy

Accuracy calculates the ratio of correctly predicted in-
stances to the total instances in the data set. We can use
Accuracy when we have a balanced data set (i.e., similar
proportions of each class) and when both false positives and
false negatives are of equal importance. The accuracy score
is found to be around 86.3% on the testing set.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

F1-Score

F1-Score is a measure combining both precision and re-
call. It is generally described as the harmonic mean of the
two. Harmonic mean is just another way to calculate an
“average” of values, generally described as more suitable
for ratios (such as precision and recall) than the traditional
arithmetic mean.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2

1
Precision + 1

Recall

(7)

A classification report as shown in Table 1 is provided to
summarize all these measures.

Table 1. Classification report

precision recall f1-score
class 0 0.85 0.88 0.87
class 1 0.87 0.85 0.86
macro avg 0.86 0.86 0.86

Confusion Matrix

Confusion matrix provides a summary of correct and in-
correct predictions. The results are summarized and pre-
sented in Figure 5.

Figure 5. Confusion matrix illustrating the true positive, true neg-
ative, false positive, and false negative rates for the classifier’s per-
formance on the testing set.

Considering both the accuracy score of the classifier and
the confusion matrix, the results demonstrate that the clas-
sifier achieves satisfactory precision on the IMDb dataset,
effectively balancing true positive and negative predictions.

6. Model Deployment
The deployment process is streamlined and efficient, uti-

lizing modern technologies such as Streamlit and Docker.
The process can be visualized in Figure 6, which illustrates
the steps involved: creating the Streamlit application, build-
ing a Docker image using a Dockerfile, pushing the image to
a container registry, pulling the image, and finally running
the Docker container, which hosts our application. This de-
ployment strategy ensures a consistent and easily maintain-
able application environment, enabling seamless integration
with various platforms and systems. By containerizing the
application with Docker, we can harness the full potential
of our sentiment analysis tool, enhancing the overall under-
standing of viewer preferences and opinions.

4



Figure 6. An illustration of the model deployment process for
the Sentiment Analysis application, showcasing the integration of
Streamlit and Docker for a seamless, maintainable, and scalable
deployment.

7. Conclusion

Sentiment Analysis also referred to as opinion mining,
involves extracting opinions from text data and classifying
them into positive, negative, or neutral ones. In this project,
a Multinomial Naı̈ve Bayes classifier is used to automati-
cally categorize the preprocessed IMDb movie reviews. In
total, 25k reviews are considered, 12.5k for positive and
12.5k for negative sentiments. Results have concluded that
the highest accuracy attained by the devised approach is
86.3%. A superior accuracy can be attained by using further
data preprocessing techniques. Furthermore, higher classi-
fication accuracy can be achieved by employing other clas-
sifiers or deep learning approaches. Exploring these oppor-
tunities is another prospect.

Code Implementation

The GitHub repository of this project is made pub-
licly available on: https://github.com/yassine-rd/movie-
sentiment-analysis.

Acknowledgement

I would like to thank the authors [13] for creating and
providing the dataset used in this project. Their contribution
has been invaluable in enabling me to conduct my analysis
and draw meaningful insights.

References
[1] A. Wijesinghe, “Sentiment analysis on movie reviews,” 10

2015. 1

[2] Statista, “Global film industry growth 2019-2025,” https://
www.statista.com/statistics/259987/film-industry-revenue-
growth-worldwide/, 2021. 1

[3] B. Pang and L. Lee, “Opinion mining and sentiment analy-
sis,” Foundations and Trends in Information Retrieval, vol. 2,
no. 1-2, pp. 1–135, 2008. 1

[4] B. Liu, Sentiment analysis and opinion mining. Morgan &
Claypool Publishers, 2012. 1

[5] P. D. Turney, “Thumbs up or thumbs down? semantic ori-
entation applied to unsupervised classification of reviews,”
Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 417–424, 2002. 1

[6] P. Lohar, H. Afli, and A. Way, “A comparative study of su-
pervised machine learning algorithms for sentiment classi-
fication,” in Proceedings of the 11th International Confer-
ence on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, 2018. 1, 2

[7] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? sen-
timent classification using machine learning techniques,” in
Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), 2002, pp. 79–86. 2

[8] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies, vol. 1, 2011, pp. 142–150. 2

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2019. 2

[10] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
“Improving language understanding by generative pre-
training,” 2018. 2

[11] D. Jurafsky and J. H. Martin, Speech and language process-
ing, 3rd ed. Prentice Hall, 2019. 2

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Efficient estimation of word representations in vec-
tor space,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2013. 2

[13] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies - Volume 1, ser. HLT ’11. USA: Association for Com-
putational Linguistics, 2011, p. 142–150. 2, 5

[14] M. F. Porter, “An algorithm for suffix stripping,” Program,
vol. 40, pp. 211–218, 1997. 3

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011. 3

[16] Vikramkumar, V. B, and Trilochan, “Bayes and naive bayes
classifier,” 2014. 3

5

https://github.com/yassine-rd/movie-sentiment-analysis
https://github.com/yassine-rd/movie-sentiment-analysis
https://www.statista.com/statistics/259987/film-industry-revenue-growth-worldwide/
https://www.statista.com/statistics/259987/film-industry-revenue-growth-worldwide/
https://www.statista.com/statistics/259987/film-industry-revenue-growth-worldwide/

	. Introduction
	. Related Work
	. Materials and Methods
	. Data
	. Preprocessing
	. Word Embedding
	. Multinomial Naïve Bayes Classifier

	. Proposed Approach
	. Results
	. Model Deployment
	. Conclusion

